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Abstract

Exhaustive grid search is a preferred method to determine the optimal solutions for stress tensor inversion because the object function can have

multiple peaks. This study developed a uniform computational grid of normalised stress tensors. We designed the grid by using the reformulated

parameter space, where normalised stress tensors correspond to points on the five-dimensional unit sphere. A computer-based procedure enabled

us to arrange points on the sphere at approximately constant intervals. As a result, the new grid includes a greater number of triaxial stresses than

axial stresses and their principal axes are uniformly distributed in physical space. An analysis of artificial fault-slip data using the multiple inverse

method showed that the utilisation of the uniform grid enhanced the resolution in distinguishing stress tensors.

q 2006 Published by Elsevier Ltd.
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1. Introduction

In order to understand the palaeostress states in the earth’s

upper crust, we can use the stress tensor inversion of fault-slip

data. Since the pioneering work by Carey and Brunier (1974), a

variety of algorithms have been proposed for the inversion (e.g.

Angelier, 1979; Etchecopar et al., 1981; Gephart and Forsyth,

1984; Nemcok and Lisle, 1995; Ramsay and Lisle, 2000,

p. 797; Yamaji, 2000). Whether explicitly or implicitly, all

methods utilise the objective function that evaluates the fitness

or unfitness of some assumed stress tensor to the data. The

optimal solution is indicated by the extremum value of the

function. Therefore, the task comes down to a peak detection

problem.

The majority of recent inversion techniques use the

computational grid and examine all possible stress states. At

the cost of calculation time and memory of the computing

machine, the exhaustive grid search succeeds in finding the

global optimum. If the fault-slip data are heterogeneous, the

objective function has multiple peaks (Yamaji, 2003). The grid

search method has another merit in the potential for detecting

multiple stress states by, for example, enumerating local

optima (Yamaji et al., 2006).
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The design of computational grid inevitably affects the

result. The grid should span over the solution space with a

sufficient number density of grid points. Here arises a

problem: what kind of solution space is suitable to express

the variety of stress states? We employ the five-dimensional

parameter space introduced by Sato and Yamaji (2006), which

has been modified from Fry’s (1999, 2001) s-space. The

reshaped parameter space has advantages in the simple

geometry and in the metric equated to a measure of difference

between stress states proposed by Orife and Lisle (2003). This

study attempts to distribute the grid points uniformly in the

parameter space at constant intervals. Although the random

distribution is easier to generate, it is ineffective because the

resolution is improved as slowly as the square root of the

number of point. In contrast, a well-designed computational

grid is effective (Matouŝek, 1999).

In this article, we first point out a problem in the

conventional grid. Then the uniform distribution of grid points

is generated by a computer-based technique (Lovisolo and da

Silva, 2001). A heterogeneous fault-slip dataset is analysed by

the multiple inverse method (Yamaji, 2000) with the new grid

to demonstrate the enhanced resolution in separating stresses.
2. Problem in the conventional grid

2.1. Reduced stress tensor

TheWallace–Bott hypothesis (Wallace, 1951; Bott, 1959) is

the theoretical basis of recent stress tensor inversion
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Fig. 1. Euler angles f, q and j, which describe the principal coordinate system.

The s3-axis is designated by f and q, while j is the rotation angle around s3-

axis, specifying s1- and s2-axes.
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techniques, which assumes that a fault slips parallel to the

resolved shear stress exerted by a common stress tensor for all

or some portion of observed faults. Since the hypothesis

requires only directional accordance, the inversion cannot

constrain the magnitudes of stress. Therefore, we deal with the

so-called reduced stress tensor (e.g. Angelier, 1984), which has

four degrees of freedom.

The four unknowns can be specified by three Euler angles,

f, q and j (Fig. 1), and the stress ratio

FZ ðs2Ks3Þ=ðs1Ks3Þ; (1)

where s1, s2 and s3 are the maximum, intermediate and

minimum principal stress magnitudes, compression being

positive. The value of F takes its minimum, 0, for an axial

compressional stress (s1Os2Zs3) and its maximum, 1, for an

axial tensional stress (s1Zs2Os3). Between the extremes, 0!
F!1, the stress is triaxial.

A stress tensor has an alternative expression as a stress

ellipsoid, of which principal radii directly represent the

orientations and magnitudes of principal stresses (Fig. 2).

The three Euler angles and the stress ratios describe the

orientation and the shape of the ellipsoid, respectively.
2.2. Conventional grid

Hitherto, the computational grids of reduced stress tensors

have been generated by changing the above-mentioned four

parameters (e.g. Gephart and Forsyth, 1984; Nemcok and Lisle,

1995; Ramsay and Lisle, 2000, p. 797; Yamaji, 2000). The

method of Yamaji (2000) attempted to give a uniform grid
Fig. 2. Stress ratio and stress ellipsoid. (a) An axial compressional stress (FZ0). (b)

prolate and oblate shapes of stress ellipsoids, the rotations indicated by white arrow
including 59,400 reduced stress tensors, which we refer to as

the conventional grid.

First, 300 orientations of s3-axes are generated as a spiral

set (Rakhmanov et al., 1994) on the hemisphere, which

provides approximately uniform distribution on the three-

dimensional sphere (Fig. 3a). The s3-axes can be specified by

the Euler angles f (0%f!2p) as longitude and q (0%q%p/2)
as colatitude (Fig. 1). Second, s1- and s2-axes are rotated on

the plane perpendicular to each s3-axis. The rotation angle is

indicated by j (0!j!p, see Fig. 1), and is digitised into 18

values at regular intervals (Fig. 3b). In consequence, you get

300!18Z5400 principal orientations. The average interval is

108. Finally, 11 values of stress ratio F are assigned to each

orientation. The interval of stress ratio is 0.1 from 0 to 1.

The conventional grid includes all possible reduced stress

tensors and has a virtually uniform density in orientation. A set

of three Euler angles is represented by a point in the ‘Euler

space’, which takes f, q and j as orthogonal coordinates.

Bunge (1985, pp. 81–86) has argued that the volume element of

the space is given by

dv Z
1

8p2
sinqdfdqdj: (2)

If the number of points in the volume dv is constant, the

density of orientations of three orthogonal axes is uniform.

Since sin qdfdq represents the area element on the unit sphere,

the spiral set (f and q) and regularly discretised j satisfies this

condition.

However, we deal with the stress ellipsoid that is

parameterised not only by the principal orientations but also

by the shape parameter (stress ratio), F, and the problem of the

conventional grid is in the independent generations of

orientations and stress ratios. The variety of orientations of

the ellipsoid actually depends on its own shape. For instance,

suppose that we have a nearly axial tensional stress (Fz1).

The attitude of stress ellipsoid is almost completely described

only by the orientation of s3-axis. Since the magnitudes of s1
and s2 are comparable, the rotation around s3-axis by the Euler

angle j is less significant (Fig. 2c). From the viewpoint of

degrees of freedom, axial stresses can be described by a single

axis with two variables (e.g. longitude and colatitude). In

contrast, a triaxial stress needs one more axis specified.

Accordingly, triaxial stresses have more diversity in orien-

tation than axial ones. Although the conventional grid contains

the same number of tensors for each value of F, the uniform

computational grid proposed in this paper is expected to

include a greater number of tensors around FZ0.5.
A triaxial stress (0!F!1). (c) An axial tensional stress (FZ1). Owing to the

s in (a) and (c) have no effect on the attitudes of ellipsoids or stress tensors.



Fig. 3. Principal orientations included in the conventional grid. (a) s3-axes. (b) s1-axes. Both stereograms use equal-area and lower hemisphere projections. See text

for the method of generating these orientations.
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3. New computational grid

3.1. Theoretical basis

To obtain a uniform set of reduced stress tensors, we

propose a new strategy. The parameter space for symmetric

tensors (Sato and Yamaji, 2006) is utilised, which has been

modified from the s-space (Fry, 1999, 2001). In the parameter

space, reduced stress tensors are represented by ‘s-vectors’

with their end points on the five-dimensional unit sphere S5.

Note that a point on S5 has four degrees of freedom similarly to

a reduced stress tensor.

The Euclidean metric on S5 corresponds to the stress

difference D (0%D%2), which was proposed by Orife and

Lisle (2003). D is a well-defined and convenient measure of

difference between reduced stress tensors. Eventually, uni-

formly distributed points on S5 give a set of reduced stress

tensors spaced at regular intervals measured by the stress

difference.
3.2. Generation of uniform computational grid

The problem of distributing many points uniformly over a

(hyper-)sphere attracts widespread interests owing to its

diverse applicability, although it generally has no analytic

solution. Saff and Kuijlaars (1997) has plainly summarised this

problem. Following the method of Lovisolo and da Silva

(2001), we obtained an approximate uniformity of distributed

points on the five-dimensional sphere. The procedure was

divided into two parts. First, the ‘square-tiling’ method

(Lovisolo and da Silva, 2001), as we called it, generated a

passably uniform distribution. Second, the LBG algorithm

(Linde et al., 1980) enhanced the uniformity.

Compared with the stochastic random generation, the

square-tiling method achieves a far better uniformity of

distributed points on a sphere. This method begins with setting

the length of edge of the ‘square’, which is calculated from the

surface area of sphere and the number of points to be

distributed. Then points are generated, one by one, with the

increments of spherical coordinates adjusted so as to keep
the area of square constant in each step. We generated 60,000

points on S5, which we call the ‘initial set’.

The distribution of the ‘initial set’ was improved by the

LBG algorithm, which is equivalent to the k-means clustering

technique (MacQueen, 1967). A clustering method is usually

employed to classify scattered points with some concentrated

regions. Meanwhile, Lovisolo and da Silva (2001) applied the

technique to a great number of points scattered uniformly,

which are called the ‘training set’. Although the uniformity of

the training set is not sufficient, the resultant centres of clusters

are expected to be arranged at a nearly regular interval, since

there is no concentrated part to be specified.

The 60,000 points of the initial set were used as initial

cluster centres. The ‘training set’ of 60,000,000 points (1000

times more than the initial set) was also generated by the

square-tiling method. The LBG algorithm classified the

training set into 60,000 clusters. The cluster centres were

interpreted as s-vectors and converted to reduced stress tensors

according to the formulation of Sato and Yamaji (2006). The

calculation took some 8 h with 32 CPUs of a parallel scalar

supercomputer at Kyoto University.
4. Features of the uniform grid

4.1. Test of uniformity

This subsection examines the geometrical uniformity of the

present computational grid of five-dimensional points. Firstly,

the mean vector ðsh i and the covariance matrix V of the 60,000

points were calculated:

ðsh iZ ðK0:0005; 0:0003; K0:0000; 0:0000; K0:0006ÞT;

VZ

0:1953 0:0004 0:0002 K0:0000 K0:0000

0:1983 0:0003 K0:0001 0:0001

0:2008 0:0000 0:0001

0:2029 0:0001

symm: 0:2026

0
BBBBBBB@

1
CCCCCCCA
;
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where we omitted the symmetric part of V by noting ‘symm.’.

The mean vector almost coincides with the origin of parameter

space and the covariance satisfies Vz1/5I, where I is the five-

dimensional unit tensor. They demonstrate isotropic charac-

teristics around the origin, which are the necessary conditions

for a uniform distribution.

Second, we measured the distances between neighbouring

grid points that are expected to be constant. Fig. 4 shows the

frequency histograms of Euclidean distances between each grid

point and its nearest neighbour. Note that the Euclidean

distances in our parameter space represent the stress

differences between corresponding reduced stress tensors

(Section 3.1).

As for the conventional grid of 59,400 tensors (Fig. 4a), the

nearest distances are relatively small and widely spread. The
Fig. 4. Histograms of Euclidean distances between grid points and their nearest

neighbours. Note that the distance is equivalent to the stress difference between

corresponding reduced stress tensors. (a) The conventional grid shows a widely

spread distribution showing non-uniformity. (b) The uniform grid has

approximately regular intervals of 0.145 in stress difference.
average is 0.075G0.039, where the uncertainty is the standard

deviation. It was found that even identical tensors (null

distance to their neighbours) were included in the conventional

grid, which could be attributed to the meaningless rotation

around the principal axis of an axial stress state (Fig. 2a and c).

The nearest Euclidean distances in the uniform compu-

tational grid are approximately constant (Fig. 4b). The average

distance is 0.145G0.006, which corresponds to the angular

distance of 8.3G0.38 on the unit sphere S5. The spread of these

distances is not satisfactorily small, which can be ascribed to

the lack of training points. Lovisolo and da Silva (2001) used a

1000 times larger number of training points than that of initial

points for only a three-dimensional distribution, while our

problem is five-dimensional. Since the increase of number of

points requires much larger computing resources, we could not

use enough training points. Setting aside this problem, the

uniformity of the new grid is far better than that of the

conventional one.

4.2. Contained stress tensors

Some favourable features were found from the reduced

stress tensors contained in the uniform grid. Fig. 5 shows its

orientational uniformity. The s1-axes of axial compression

(0%F%0.1), triaxial stress (0.49%F%0.51) and axial tension

(0.9%F%1) were plotted on the stereograms of Fig. 5a–c,

respectively. All these axes are almost uniformly distributed,

even though the orientation in physical space was not

considered in the generation of the uniform grid. The s1
orientation is more important for an axial compressional stress

than for an axial tensional stress. Reflecting on that, the s1-axes

in Fig. 5a appear to be distributed more uniformly than those in

Fig. 5b and c.

The uniform grid includes the entire range of stress ratios

(0%F%1). Their frequency is unimodal and symmetric about

the mode FZ0.5 (Fig. 6). This abundance of triaxial stresses

arises from their diversity in orientation, as was expected in

Section 2.2. Again, this feature was not planned, but is a

consequence of the expression of reduced stress tensors as

points on the five-dimensional unit sphere.

4.3. Uniform frequency of angular misfit

Another way of evaluating the computational grid is to

calculate the fitness to a single fault for each contained reduced

stress tensor. Fig. 7 shows the frequency histograms of angular

misfits between the slip direction of an arbitrary fault datum

and the resolved shear stresses calculated for all reduced

stresses. Compared with the conventional grid (Fig. 7a), the

uniform grid (Fig. 7b) yielded a relatively uniform frequency.

Since the angular misfit is often used to assess the determined

stress through inversion, there should be no preferred value of

angular misfit. The uniformity of the present grid justifies

various algorithms of inversion using the angle as the objective

function.

The above feature can be explained with the geometry in the

parameter space. Sato and Yamaji (2006) have pointed out that



Fig. 6. Histogram of stress ratios of reduced stress tensors contained in the

uniform grid. They show a unimodal distribution around the mode of FZ0.5.

Note that the conventional grid has, in contrast, the same number of grid points

for each value of discretised stress ratio.
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the angular misfit appears on the five-dimensional unit sphere

S5 as is shown in Fig. 8. A fault-slip datum is represented by the

paired unit vectors ð3 and ð3 0, which are perpendicular to each

other (see Sato and Yamaji (2006) for details). When a s-vector

ðs is orthogonally projected onto a two-dimensional ð3Kð3 0

plane, the angle between the projected s-vector ðs* and ð3 is

equivalent to the angular misfit in physical space. On this

geometry, a certain value of angular misfit is given by

s-vectors on a half great circle which meets ð3 at the angle.

Owing to the uniformity of the present grid, all great

semicircles include almost a constant number of trial s-vectors.

Accordingly, the angular misfits of stresses to any fault obey

the uniform distribution.
5. Numerical experiment

5.1. Method

The practical effect of the newly developed grid was tested

by using it as a search grid for stress tensor inversion. The

analysed artificial fault-slip data are comprised of 60 faults

(Fig. 9). The fault planes are randomly oriented and the slip

directions are concordant with two stress states, both of which

are triaxial (FZ0.5). A NNE–SSW compressional stress

(stress A) is responsible for 40 faults, while the remaining 20

faults result from N–S compression (stress B):

Stress A : s1 035=20; s3 125=00; FZ 0:5; 40 faults;

Stress B : s1 000=20; s3 090=00; FZ 0:5; 20 faults;

Therefore, the data are heterogeneous and stress A is easier

to be detected than stress B owing to the large number of faults.
Fig. 5. Orientations of s1-axes in the uniform grid for each range of stress ratio.

Since the orientation of s1-axis is more important for a lower value of stress

ratio F, i.e. axial compression, the distribution has better uniformity with low

F. (a) 0%F%0.1. (b) 0.49%F%0.51. (c) 0.9%F%1.



Fig. 7. Frequency histogram of angular misfit of stress tensors included in each grid against an arbitrary chosen fault-slip datum. (a) The conventional grid. (b) The

uniform grid. The latter gives more uniform frequency of angular misfit.

K. Sato, A. Yamaji / Journal of Structural Geology 28 (2006) 972–979 977
We used the multiple inverse method (Yamaji, 2000) to

separate these stresses. The method is a kind of resampling

technique. After extracting all possible combinations of k faults

from the whole dataset of N faults, where we set kZ4, the

optimal reduced stress tensors are determined for each subset.

The number of solutions is given by the binomial coefficient

NCNZN!=k!ðNKkÞ!. The significant stress states are recog-

nised as clusters of the numerous solutions. This method uses

the exhaustive grid search in determining the optimal solution

for each subset and we tested the conventional grid of 59,400

tensors and the uniform grids of 60,000 and 30,000 tensors.

The grid of 30,000 tensors was generated in the same procedure

to that of 60,000 points. The software of the multiple inverse

method with the uniform computational grid attached (Version
Fig. 8. Schematic figure showing the angular misfit D measured on the five-

dimensional sphere S5. A reduced stress tensor is equivalent to a s-vector ðs.
When ðs is projected onto the ð3Kð3 0 plane, which is specified by a fault-slip

datum, the angle between ð3 and the projected vector ðs* is equal to the angular

misfit. Therefore, s-vectors shown by white dots give the same angle of misfit.

On the half great circle shown by the bold line, the angular misfit equals zero.

See Sato and Yamaji (2006) for detailed formulation.
4.0 and later) is available to the public at our website (http://

www.kueps.kyoto-u.ac.jp/~yamaji/PDS/indexe.html).
5.2. Results

The results of inversion are visualised in Fig. 10. Following

Yamaji (2000), a reduced stress tensor was plotted as a tadpole-

like symbol. The s1-axes are shown by ‘heads’ (squares) in

each left-hand stereogram. The lengths and directions of the

attached ‘tails’ (bars) represent the orientations of s3-axes, as if

there were small stereograms around the heads. The right-hand

stereograms are complementary ones in which the role of head

and that of tail are interchanged. The greyscale colours indicate

the values of stress ratio. In order to emphasise clusters,
Fig. 9. Artificial fault-slip data used in the numerical experiment. The data are

shown by the tangent-lineation diagram (Twiss and Gefell, 1990) with equal-

area and lower hemisphere projections. The arrows are plotted in the positions

of fault normals. They point to the slip directions of footwall blocks. The black

and white arrows correspond to faults activated by stress A (40 faults) and

stress B (20 faults), respectively.

http://www.kueps.kyoto-u.ac.jp/~yamaji/PDS/indexe.html
http://www.kueps.kyoto-u.ac.jp/~yamaji/PDS/indexe.html


Fig. 10. The results of analyses by the multiple inverse method. (a) Using the conventional search grid (59,400 grid points), stress B of N–S compression cannot be

detected. (b) The uniform search gird (60,000 grid points) successfully distinguished two stresses. (c) Even when the number of uniform grid points is reduced to

30,000, the given two stresses could be recognised. See text for the method of plotting stress tensors on the paired stereograms.
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the ‘heads’ are enlarged according to their number of times

selected as optimal solutions.

Using the conventional grid (Fig. 10a), the stress A of 40

faults was detected as a large cluster, while the stress B made

so small a cluster that it could not be recognised. In contrast,

the uniform grid enabled us to identify both stress states clearly

(Fig. 10b). These results show the enhanced resolution in

detecting plural stresses. Furthermore, the inversion on the

uniform grid of 30,000 tensors also successfully distinguished

two stresses (Fig. 10c). The calculation time for this case was

about one-third of that with 60,000 grid points. Therefore, the

computational efficiency was also improved.
The uniformity of computational grid is especially

important for the multiple inverse method. Fig. 11

schematically shows the problem of a non-uniform grid.

Assume that the extracted subsets of fault-slip data have

their own optimal solutions irrespective of the arrangement

of grid points. The solutions will be assigned to each

nearest grid point. If the grid is coarse, the solutions are

concentrated on a few grid points. Conversely, a fine grid

will divide the solutions into many grid points, even if there

is a potential cluster. Therefore, a non-uniform compu-

tational grid makes the resolution heterogeneous in solution

space.



Fig. 11. Schematic figure showing the problem of a non-uniform search grid.

The open circles are the optimal stresses for subsets of fault-slip data extracted

by the multiple inverse method (Yamaji, 2000). For the coarse part of the search

grid, the solutions are densely assigned, while the grid points in the fine part

obtain small numbers of solutions. This heterogeneity distorts the resolution in

detecting plural clusters of stresses.
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6. Conclusion

The uniform computational grid of normalised stress tensors

was developed. The uniformity is defined in the parameter

space (Sato and Yamaji, 2006), where a reduced stress tensor is

equivalent to a point on the five-dimensional unit sphere and

the metric corresponds to the stress difference (Orife and Lisle,

2003). The computer-based technique of Lovisolo and da Silva

(2001) generated the uniformly distributed points on the

hypersphere. When the new grid is used as a search grid for the

multiple inverse method (Yamaji, 2000), the resolution in

detecting plural stresses is enhanced. The uniform compu-

tational grid has potential application to the inversion of other

physical quantities represented by symmetric and normalised

tensors and may be useful for theoretical investigations on such

tensor quantities.
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